Clustering Example ================== This example shows how to perform spatial clustering on Points of Interest. .. code-block:: python from verus.clustering import GeOPTICS, KMeansHaversine import pandas as pd # Load POI data poi_data = pd.read_csv("../../data/poti/Porto_dataset_buffered.csv") # Run OPTICS clustering to obtain initial centers optics = GeOPTICS( min_samples=5, xi=0.05, min_cluster_size=5, verbose=True ) optics_results = optics.run(data_source=poi_data) # Use OPTICS centers to initialize KMeans if optics_results["centroids"] is not None and len(optics_results["centroids"]) > 1: centers = optics_results["centroids"] print(f"Running KMeans with {len(centers)} OPTICS centers") kmeans = KMeansHaversine( n_clusters=len(centers), init="predefined", random_state=42, predefined_centers=centers ) kmeans_results = kmeans.run( data_source=poi_data, centers_input=centers ) # Access clustering results clusters = kmeans_results["clusters"] centroids = kmeans_results["centroids"] print(f"Found {len(centroids)} clusters") print(f"Cluster distribution:\n{clusters['cluster'].value_counts()}") Follow this example in the project's notebooks folder.